| 1. | If one imaginary root of zero is omega , omega square 假设" 0 "的虚根是 |
| 2. | If one imaginary root of zero is omega , is x an imaginary root 假设一个" 0 "的虚根是, x是虚根吗? |
| 3. | This is the disposition of omega , the imaginary root of omega equals ? ? 1 这就是的属性,的虚根为1 |
| 4. | At last in chapter 5 , we give proofs to some properties of real and imaginary roots of g ( a ) and a guess to express the dimensions of schubert submodules , whose proof is encountering some difficulty at present ) 。第五节我们先证明了g卜)的实根和虚根的几个性质,然后对schubert子模的维数表示给出猜想,这一猜想的证明在目前的证明中尚有困难。 |
| 5. | There are two parts in this article . part i is mainly discussing an elementary problem in kac - moody algebra : how to describe the real and imaginary root vectors corresponding to a given real or imaginary root 本文分为两个相对独立的篇章:第一部分主要讨论了kac - moody代数中的一类基本问题,即给定一个实根或虚根,其对应的实根向量和虚根向量该如何表示 |
| 6. | The second is to assure a multiple - parameter matrix characteristic equation has no nonzero pure imaginary roots . the key of this part is to verify that the structured singular value of a one - unknown matrix function is not equal to one . this work can be accomplished by a frequency sweeping test method 前者的核心是判定某常矩阵的结构奇异值不等于1 ,这只需计算常矩阵的结构奇异值;后者的核心是判定某个以频率为变元的矩阵的结构奇异值不等于1 ,这一问题由频率扫描测试法解决。 |